Normal bronchial epithelial cell expression of glutathione transferase P1, glutathione transferase M3, and glutathione peroxidase is low in subjects with bronchogenic carcinoma.
نویسندگان
چکیده
Normal bronchial epithelial cells (NBECs) are at risk for damage from inhaled and endogenous oxidative species and from epoxide metabolites of inhaled polycyclic aromatic hydrocarbons. Epidemiological and in vitro data suggest that interindividual variation in this risk may result from variation in NBEC expression of enzymes that inactivate reactive species by conjugating them to glutathione. Quantitative competitive reverse transcription-PCR was used to measure mRNA levels of glutathione transferases (GSTs) and glutathione peroxidases (GSHPxs) in primary NBECs from subjects with or without bronchogenic carcinoma. Mean expression levels (mRNA/10(3) beta-actin mRNA) in NBECs from 23 subjects without bronchogenic carcinoma compared to those from 11 subjects with bronchogenic carcinoma respectively (in parentheses) were: mGST (26.0, 6.11), GSTM3 (0.29, 0.09), combined GSTM1,2,4,5 (0.98, 0.60), GSTT1 (0.84, 0.76), GSTP1 (287, 110), GSHPx (140, 62.1), and GSHPxA (0.43, 0.34). Levels of GSTP1, GSTM3, and GSHPx were significantly (P < 0.05) lower in NBECs from subjects with bronchogenic carcinoma. Further, the gene expression index formed by multiplying the values for mGST x GSTM3 x GSHPx x GSHPxA x GSTP1 had a sensitivity (90%) and specificity (76%) for detecting NBECs from bronchogenic carcinoma subjects that was better than any individual gene. In cultured NBECs derived from eight individuals without bronchogenic carcinoma and incubated under identical conditions such that environmental effects were minimized, the mean level of expression and degree of interindividual variation for each gene evaluated was less than that observed in primary NBECs. Data from these studies support the hypotheses that (a) interindividual variation in risk for bronchogenic carcinoma results in part from interindividual variation in NBEC expression of antioxidant genes; (b) gene expression indices will better identify individuals at risk for bronchogenic carcinoma than individual gene expression values; and (c) both hereditary and environmental exposures contribute to the level of and interindividual variation in gene expression observed in primary NBECs. Many epidemiological studies have been designed to evaluate risk associated with polymorphisms or gene expression levels of putative susceptibility genes based on measurements in surrogate tissues, such as peripheral blood lymphocytes. Based on data presented here, it will be important to include the assessment of NBECs in future studies. Measurement of antioxidant gene expression in NBECs may identify the 5-10% of individuals at risk for bronchogenic carcinoma. Bronchoscopic sampling of NBECs from smokers and ex-smokers then will allow susceptible individuals to be entered into surveillance and/or chemoprevention studies.
منابع مشابه
Peroxidase Is Low in Subjects with Bronchogenic Carcinoma Transferase P1, Glutathione Transferase M3, and Glutathione Normal Bronchial Epithelial Cell Expression of Glutathione
Normal bronchial epithelial cells (NBECs) are at risk for damage from inhaled and endogenous oxidative species and from epoxide metabolites of inhaled polycyclic aromatic hydrocarbons. Epidemiological and in vitro data suggest that interindividual variation in this risk may result from variation in NBEC expression of enzymes that inactivate reactive species by conjugating them to glutathione. Q...
متن کاملGenetic Polymorphisms of Glutathione S-Transferase mu1 (GSTM1) and Theta1(GSTT1) and Bronchial Asthma Susceptibility in Ukrainian Population
متن کامل
Does Occupational Exposure to Solvents and Pesticides in Association with Glutathione S-Transferase A1, M1, P1, and T1 Polymorphisms Increase the Risk of Bladder Cancer? The Belgrade Case-Control Study
OBJECTIVE We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. PATIENTS AND METHODS A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Delet...
متن کاملGenetic Polymorphism of the Glutathione S-Transferase M1 and Development of Breast Cancer
Glutathione S-transferases (GSTs) are encoded by a superfamily of genes and play a role in the detoxification of potential carcinogens. The human GSTs are divided into four classes: alpha, mu, pi and theta. Previous studies indicated that the absence of the Glutathione S-Transferase M1 (GSTM1) protein correlated with an increased risk of developing some types of cancers. Association between spe...
متن کاملGamma-glutamyl transferase deficiency results in lung oxidant stress in normoxia.
gamma-Glutamyl transferase (GGT) is critical to glutathione homeostasis by providing substrates for glutathione synthesis. We hypothesized that loss of GGT would cause oxidant stress in the lung. We compared the lungs of GGT(enu1) mice, a genetic model of GGT deficiency, with normal mice in normoxia to study this hypothesis. We found GGT promoter 3 (P3) alone expressed in normal lung but GGT P3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 60 6 شماره
صفحات -
تاریخ انتشار 2000